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Introduction: Speech recognition is currently being deployed in medical and anaesthesia

applications. This article is part of a project to investigate and further develop a proto-

type of a speech-input interface in Danish for an electronic anaesthesia patient record, to

be used in real time during operations.

Objective: The aim of the experiment is to evaluate the relative impact of several factors

affecting speech recognition when used in operating rooms, such as the type or loudness

of background noises, type of microphone, type of recognition mode (free speech versus

command mode), and type of training.

Methods: Eight volunteers read aloud a total of about 3600 typical short anaesthesia com-

ments to be transcribed by a continuous speech recognition system. Background noises

were collected in an operating room and reproduced. A regression analysis and descriptive

statistics were done to evaluate the relative effect of various factors.

Results: Some factors have a major impact, such as the words to be recognised, the type

of recognition and participants. The type of microphone is especially significant when

combined with the type of noise. While loud noises in the operating room can have a pre-

dominant effect, recognition rates for common noises (e.g. ventilation, alarms) are only
slightly below rates obtained in a quiet environment. Finally, a redundant architecture

succeeds in improving the reliability of the recognitions.

Conclusion: This study removes some uncertainties regarding the feasibility of introducing

speech recognition for anaesthesia records during operations, and provides an overview of

the interaction of several parameters that are traditionally studied separately.

loudness of background noises, the type of microphone (head-
1. Introduction

This paper reports some preliminary experiment about the
effects of various background noises in the hospital operating
room (OR) environment on speech recognition. The envisaged
audio interface would supplement existing electronic anaes-

thesia record systems with voice input facilities during the
operation. This work is part of a project seeking to investigate
[1] and further develop a prototype of such a system in Danish.
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During the experiment, eight participants read aloud a
corpus of typical anaesthesia comments to be transcribed
by a continuous speech recognition system. The main goal
of the study was to measure the respective impact on the
recognition rate of various parameters, namely the type or
set or handheld) and the type of recognition mode (free speech
versus command mode). Additional parameters were also
investigated, including the type of training (with or without

erved.
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(Mic#1). This was the recommended model for the Philips
SpeechMagic system. It is a Dictaphone-like device, held in
one hand about 15 cm from the mouth. On PC#2, a head-
i n t e r n a t i o n a l j o u r n a l o f m e d i

ackground noise) and the gender of the participants. A logis-
ic regression analysis was done to estimate the significance
f each of the evaluated parameters.

As far as the author knows, this is the first study report-
ng the effect of background noises on speech recognition in
anish and the first to compare the relative impact of the
bove parameters, all known to separately affect speech recog-
ition, but not yet studied in parallel. Finally, a redundant
ross-matching high level architecture was tested and shown
o improve recognition rates.

. Methodology

.1. Preparatory work

o ensure the reproducibility of the background noises, it was
ecided to carry out the experiment in a laboratory rather than

n the real-life context of a hospital OR. Some background
oises were recorded in an OR (Herlev University Hospital
f Copenhagen) during real anaesthesias with surgery and
-rays, using a multi-directional microphone placed in the
roximity of the anaesthesiologist. Simultaneously, an inte-
rating sound level meter (from Brüel & Kjær, model 2225)
as used to measure the peak level and fixed level in dB(A)
f various sounds. The 60 s Leq

1 in dB(A) was also calculated
or the background noise made by the room ventilation. The

easurements have been made from the place where the
naesthesiologist is usually standing, and by pointing the
ound level meter toward the various sound sources.

The collected sound files were edited and samples selected.
amples of the same type of noise were concatenated to cre-
te longer sequences with the same type of noise. The nine
background noises” were:

1) “Silence”: the laboratory background noise ∼32 dB(A);
2) “Ventilation1”: the constant background noise in the OR,

air conditioning and pulse beeps, 48–63 dB(A), slow mea-
sure 60 dB(A), peak 70 dB(A);

3) “Alarms”: a set of classic anaesthesia alarms using various
tones, 57–68 dB(A), peak 80 dB(A);

4) “Scratch”: velcro noise when opening anti X-ray suites
82 dB(A);

5) “Aspiration”: suction of saliva in the patient’s mouth
65 dB(A);

6) “Discussion”: female voices, discussions between the sur-
geon 60 dB(A) and the nurse 70 dB(A);

7) “Metal”: various metallic clinks, 58–82 dB(A), peak 97 dB(A),
this is the noise with the sharpest peaks;

8) “Ventilation2”: Same as “Ventilation1” but 10 dB(A) louder,
giving 61–73 dB(A);

9) “Ventilation3”: Same as “Ventilation1” but 20 dB(A) louder,
giving 71–83 dB(A), slow measure 75 dB(A).
.1.1. Reproducing sounds
amples were reproduced with a computer plugged to an
udio amplifier (Sony STR-GX290) with two loudspeakers

1 Leq: equivalent continuous sound pressure.
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(Jamo Compact 1000, 65 Hz to 20 kHz, 90–120 W), positioned
1.5 m apart and pointing toward participants about 2 m away.
This is similar to the distance from the anaesthesiologist to
the noise sources in a real OR. The samples were played in a
loop as long as needed.

In order to replay the samples at the appropriate volume,
the sound level meter was used again from the position where
the participants would be sitting, pointing in the direction of
the loudspeakers. The replay volume was adjusted to match
as closely as possible the measured values in dB(A).

2.2. Experiment

2.2.1. Speech recognition software
The lab experiment was made with the speech recognition
system Philips2 SpeechMagic 5.1.529 SP3 (March 2003) and
SpeechMagic InterActive (January 2005), with a package for
the Danish language (400.101, 2001) and a “ConText” for
medical dictation in Danish (MultiMed Danish 510.011, 2004)
from Philips in collaboration with the Danish company Max
Manus.3 The speech recognition workflow is the same as
detailed in [2].

For voice dictation in free speech mode, or “natural lan-
guage”, SpeechMagic is integrated with Microsoft Word 2003.
At the time of writing this article, a similar speech recognition
system was already in use and under further deployment at
Vejle Hospital (Denmark), for pre- and post-operative tasks,
but not during operations [1]. With this system it is possi-
ble to record what is being said and to submit the WAV file
for recognition afterwards; this was the process used for this
experiment.

For voice commands, or “constrained language”, Speech-
Magic InterActive uses grammars [3] describing the set of
possible commands. The grammar must contain the phonetic
transcription of the terms used, for which the “Phonetic Tran-
scriber component” can help.

Philips Speech Magic is now available in various languages,
is no longer batch only (i.e., documents can be navigated and
corrected while dictated) and has an interactive mode com-
bining free text and command mode.

2.2.2. Hardware
Two similar laptop computers were used, running identi-
cal software. USB connections were chosen for microphones,
since the noise added when using the analog mini-jack input
to the sound card of the laptop computers noticeably reduced
speech recognition accuracy. Two different microphones were
employed, one per laptop, in order to evaluate the impact
of these on the speech recognition quality. On PC#1, the
microphone was a Philips SpeechMike Classic USB 62644
set microphone was used (Mic#2, ∼2.5 cm from the mouth),

2 [http://www.speechrecognition.philips.com].
3 [http://www.maxmanus.dk].
4 [http://www.dictation.philips.com/index.php?id=1470].

http://www.speechrecognition.philips.com/
http://www.maxmanus.dk/
http://www.dictation.philips.com/index.php?id=1470
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model PC145-USB5 from Sennheiser Communications (uni-
directional, 80–15,000 Hz, −38 dB, ∼2 k�). Sennheiser indicates
that this model is suited for voice recognition. One of its ear-
phones was removed, so that participants might hear the
background noise properly and therefore be affected by the
so called “Lombard effect” [5]. This effect is the tendency to
alter the voice in noisy environments, and is known to affect
speech recognition performance [6].

2.2.3. Experimental configuration
The experiment was made using the two microphones simul-
taneously; that is PC#1 and PC#2 ran in parallel, performing
the same task but with two slightly different sound inputs due
to the different positions and types of microphones. The two
laptop computers were on a desktop and the participant was
sitting in front of them. The participant held the first micro-
phone in one hand, and wore the second microphone as a
headset. The loudspeakers were 2 m to the left of the partici-
pants. The two microphones were approximately at the same
distance from the loudspeakers.

2.2.4. Participants
Eight subjects participated in this experiment (four males, four
females, 27–62 years of age). The participants were Risø staff
with no medical background. One of the participants had lim-
ited prior experience with speech recognition, the others had
none. Prior to the experimental sessions the participants had
the opportunity to familiarise themselves with the expres-
sions and sentences to be dictated.

2.2.5. Test material
The 100 most frequently recorded comments in Køge Hospi-
tal’s anaesthesia journal system from 2004 were identified and
used as the basis for command mode training and testing in
this study. The distribution of frequencies is interesting: the
most frequent comment was used 9495 times, the 43rd 105
times, the 982nd 2 times and the rest only once. During dic-
tations, each comment was followed by the Danish word for
“full stop”.

2.2.6. Training the speech recognition software
The Philips SpeechMagic system is speaker dependent and
must thus be trained to recognise each speaker’s voice. The
enrolment phase was conducted with the configuration set-
tings as described above. Each participant used the two
microphones simultaneously and thereby trained the two
computers PC#1 and PC#2 simultaneously. Training consisted
of going through the training wizard, a module included in
SpeechMagic. As the system learns every time it is used, espe-
cially when corrections are made, all the commands were then
dictated once and corrected.

This training phase was done twice: once with a silent
background ∼32 dB(A) and once with the background noise

“Ventilation1”. Half of the participants trained first with the
silent background and then the noisy one, the other half in
opposite order. The system was set up not to improve its gen-
eral model across users.

5 [http://www.oticon.com/eprise/main/Sennheiser
Communications/com/Products/CNT05 VBLG?ProductId=PC145].
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2.2.7. Dictation, recognition and transcription
During each session, each participant read a set of about 50
sentences. While speaking, the two computers worked in par-
allel, receiving the sound from their respective microphones.
The computers did the recognition for the command mode
in real time, and a text file containing the results was saved.
The command mode was using the first profile only. Conse-
quently, the command mode was done using a profile trained
with background noise for half of the users, and using a profile
trained in silence for the other half. Simultaneously, each com-
puter saved an audio file that was used afterwards for offline
free text transcription. When the session was finished, the free
text transcription was done twice, once with each of the two
training profiles (with and without background noise).

2.2.8. Methodology memento
For each participant, there are nine sessions with various
background noises. A session is composed of 50 sentences
(±1). In addition to the sessions, each participant trains the
system twice: once in a quiet environment, once with back-
ground noise (two training profiles). The data thus comprise:

8 participants × 9 background noises× ∼ 50 sentences

� 3600 dictations

All dictations are in two audio files, recorded by the two
microphones attached to PC#1 and PC#2. For each audio file,
there are two recognition modes: the command mode based
on a grammar and the free text mode using the medical con-
text. The recognition in free text mode is done with both
training profiles, while the recognition in command mode is
done only with the first training profile (four participants with
background noise, four without):

∼ 3600 dictations × 2 microphones × (1 command mode

+2 free text modes) � 21, 600 recognition samples.

2.3. Statistics

The results and analysis presented below are based on
descriptive statistics and regression analysis (Table 1, binary
logistics regression where the dependent variable is binary:
recognition is successful or not) using SPSS6 version 14.

Binary regression has been chosen in order to keep a high
number of samples, instead of aggregating them to a per-
centage recognition rate. The regression model aims to show
the relative impact of various parameters, or combinations
of parameters, in a system where parameters are combined
and difficult to isolate. The model reported in Table 1 was
obtained by testing many possible combinations of parame-
ters and using the significance score to select the parameters.
2.3.1. Recognition rate
For calculating the recognition rate of any speech recognition
engine, one of the most common metrics is the word error

6 Statistical Package for the Social Sciences
[http://www.spss.com].

http://www.oticon.com/eprise/main/SennheiserCommunications/com/Products/CNT05_VBLG?ProductId=PC145
http://www.oticon.com/eprise/main/SennheiserCommunications/com/Products/CNT05_VBLG?ProductId=PC145
http://www.spss.com/
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Table 1 – Regression model (binary logistic)

Variables ˇ d.f. Sig.

Mode(1): free text mode −.144 1 .208a

Microphone(1): microphone 2 .162 1 .174a

Training with noise(1): with noise −1.039 1 .000
Person id: (woman ∼average) 7 .000
Person id(1): woman .178 1 .026
Person id(2): man −.322 1 .000
Person id(3): man −.982 1 .000
Person id(4): man .264 1 .000
Person id(5): woman .006 1 .932
Person id(6): man −.307 1 .000
Person id(7): woman −.625 1 .000
Session id: (silence) 8 .000
Session id(1): ventilation1 −.213 1 .069
Session id(2): alarms −.503 1 .000
Session id(3): scratch −1.520 1 .000
Session id(4): aspiration −1.116 1 .000
Session id(5): discussion −.751 1 .000
Session id(6): metal −.475 1 .000
Session id(7): ventilation2 −1.051 1 .000
Session id(8): ventilation3 −1.414 1 .000
Session order: (first session) 9 .000
Session order(1) .067 1 .594
Session order(2) .675 1 .000
Session order(3) .762 1 .000
Session order(4) 1.310 1 .000
Session order(5) .414 1 .004
Session order(6) .727 1 .000
Session order(7) .932 1 .000
Session order(8) .585 1 .000
Session order(9): last sessions 1.201 1 .000
Mode(1) by training with noise(1) 1.214 1 .000
Modea session order 9 .000
Mode(1) by session order(1) −.070 1 .647
Mode(1) by session order(2) −.869 1 .000
Mode(1) by session order(3) −.863 1 .000
Mode(1) by session order(4) −1.737 1 .000
Mode(1) by session order(5) −.524 1 .001
Mode(1) by session order(6) −.745 1 .000
Mode(1) by session order(7) −1.168 1 .000
Mode(1) by session order(8) −.781 1 .000
Mode(1) by session order(9) −1.541 1 .000
Microphonea session id 8 .000
Microphone(1) by session id(1) −.024 1 .884
Microphone(1) by session id(2) .038 1 .811
Microphone(1) by session id(3) .778 1 .000
Microphone(1) by session id(4) .552 1 .000
Microphone(1) by session id(5) .533 1 .001
Microphone(1) by session id(6) .154 1 .339
Microphone(1) by session id(7) .519 1 .001
Microphone(1) by session id(8) .908 1 .000
Constant 2.256 1 .000
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Fig. 1 – Classification of correct and failed recognitions (per
sentence).
a Mode and microphone are also used as combined variables. Their
effect is significant.

ate (WER) or its complement, the word recognition rate (WRR),
ut both have limitations. To facilitate comparisons with other
rticles, WRR will be reported for some of the results.

N − L

RR = 1 − WER =

N

here N is the number of words in the reference and L is
he Levenshtein distance at the word level (i.e., substitu-
ions + deletions + insertions).
In this paper, a semi-automatic measurement is favoured.
This measurement is less impartial but more relevant to the
targeted use: the percentage of sentences that can be under-
stood “without ambiguity”. The so-called “concept-matching
accuracy” [7] is considered more important than raw recogni-
tion accuracy. If a sentence is transcribed exactly as expected
or with an alternate but correct spelling (e.g., “one”/“1”) the
sentence is accepted as a success (see “level 4” on Fig. 1). If
a sentence contains some mistake such as an incorrect plu-
ral mark (common in Danish speech recognition), the lack of a
minor word (e.g. an article), or any alteration that does not pre-
vent a skilled human reader from understanding its meaning
without ambiguity, then this sentence is counted as a partial
success.

This method was decided before running the experiment,
but had only a minor effect on the results since less than 2.4%
of the samples are partial successes (only in free text mode,
see “level 3” on Fig. 1).

2.3.2. Danish language
The natural language of this study was Danish, a language
that, like German, joins compound nouns. For instance,
“the general department” is written “stamafdelingen” so if
“the child department” (“børneafdelingen”) was recognised
instead, that would give 0 good recognitions and 1 false recog-
nition in Danish, but two good recognitions and one false
recognition in English. This illustrates that WER is less fair
than command (sentence) error rate to compare recognition
rates in Danish with those in English. Other metrics address-
ing variability in word length could be less sensitive to this
problem, such as the errors per word (EPW) [8].

Furthermore, “Danish has 21 monophthongs that are
unevenly distributed in the vowel space, with a densely pop-
ulated upper portion [. . .]. British English, on the other hand,
has only 11 monophthongs that are evenly distributed in the
vowel space” [9]. This makes Danish vowels, which in addition
have long and short versions (total of 28) [10], potentially more
difficult to distinguish than English ones, with a direct impact

on current speech recognition engines that typically priori-
tise vowels. The context is also crucial in Danish, where many
words differ very little phonetically, such as “department”
(“afdeling”) and “the department” (“afdelingen”). Additionally,
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since Danish is a relatively small language (∼5.5 M speakers),
little research has been published about tuning speech recog-
nition to its specificities (such as the glottal catch “stød”).

3. Results

Fig. 1 shows the percentages of recognition errors at sentence
level, for free text and command mode, the two types of micro-
phones, and overall. Results are discussed in details in the
following sections.

3.1. Microphones

As both microphones received the same material, it is possible
to compare directly their average recognition rate. Micro-
phone 2 (headset) has a higher recognition rate (83.2%) than
microphone 1 (handheld, 73.9%), see Fig. 1 (levels 3 + 4). This
advantage of microphone 2 is present for all sessions (cf.
Fig. 2). Part of this effect could be explained by the position
of the microphones. Microphone 2 (headset, ∼2.5 cm to the
left of the mouth) is closer to the mouth than microphone
1 (handheld, ∼15 cm in front of the mouth). The regression
model (Table 1) shows a significant difference for microphone
type when combined with the type of background noise, as
reported below (Fig. 2); the combined effect of the type of
microphone and the type of background noise is significant
for most cases (p < .001). While both microphones have sim-
ilar recognition rates for silence and low background noise
(“Ventilation1”, “Alarms”), the advantage of microphone 2
becomes evident when the background noise gets louder
(“Scratch”, “Aspiration”, “Ventilation2–3”). Microphone 2 is
also less sensitive to a background with other people talking
(“Discussion”).

This contrasts with a recent study [11] that finds no
significant difference between two types of microphone
(unidirectional headset, versus built-in omni-directional
microphone of a laptop). A possible explanation may be that
during the experiment reported in [11], some noises were

mixed afterwards (i.e., not recorded simultaneously with the
speech), and possibly not replayed at a sufficiently high vol-
ume.

Fig. 2 – Effect of microphone type combined with session
types (noises). The reference (0) is microphone 1 with a
quiet background.
Fig. 3 – Recognition rates detailed per recognition modes
and session types.

3.2. Recognition mode (command versus free text)

With an average recognition rate of 81.6%, the command mode
performed better than free speech mode (77.1%), as expected.
Fig. 3 shows that for some background noises command mode
performed considerably better than free text mode (“Scratch”,
“Aspiration”, “Metal”) and for some it is the opposite (“Venti-
lation2”, “Ventilation1”).

While the command mode had a better average perfor-
mance than free text mode, there are some participants
with an enormous difference in favour of the command
mode (e.g., +23.2 points for Woman1, see Fig. 4). In contrast,
one participant shows the opposite effect (−12.55 points for
Woman4).The regression model in Table 1 shows a significant
effect of the recognition mode when combined with the type
of training and the order of the sessions, p < .001 for most cases
(the order of the sessions – see “time effect” in Table 5 – has
only a very small impact).

3.2.1. Type of training: with or without background noise
Surprisingly, command mode trained without background
noise performed better (85.5% recognition rate) than com-
mand mode trained with background noise (77.8%).
This is confirmed by the regression analysis (Tables 1 and 2);
however, since in command mode there are only four partic-
ipants for each type of training this result should be treated
with caution.

Fig. 4 – Recognition rates detailed per recognition mode
and person (gender).
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Table 2 – Effect of training type combined with
recognition mode

Recognition mode

Command Free

ˇ from regression model
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Training
Without noise 0 −.144
With noise −1.039 .031

On average, free speech recognition performed a bit better
hen used with a profile trained with background noise (free2,

8.2% recognition rate) than when used with profiles without
ackground noise (free1, 75.6%) (cf. also Table 2). The differ-
nce gets increasingly visible as background noises get louder
“Ventilation3”, “Scratch”).

As expected, in free text mode the best performances are
chieved in silence with a system trained in silence (Table 3).
hen trained with background noise, the recognition rate

s indeed lower for silent sessions. The second best perfor-
ances are with a system trained with a given background

oise in sessions with the same background noise. On other
ypes of noises and at other levels of loudness, the system
rained with background noise still performs better than the
ne trained in silence.

These results are similar to previous studies [12]. A system
sing free text mode should therefore be trained with the type
f background noise that will typically be present during use.

.2.2. Confidence score in command mode
n command mode, a valuable indicator is the confidence score
iven by the speech recognition system for each recognised
ommand. This score is between .0 and 1.0 and tells how
onfident the engine is that the command has been recog-
ised correctly. The confidence score is especially valuable

n settings where wrong recognitions may be dangerous and
o recognition thus more desirable than a recognition that is

ikely to be wrong [8]. In the present experiment the confidence
core was 1.0 in 5813 (80.77%) of the 7197 command-mode
ecognitions. For these 5813 recognitions, the recognition rate
as 98.16%. The recognition rate decreases rapidly for lower

onfidence scores, showing that it can reliably be used as a
hreshold.
.3. Background noises

elative to the recognition rates obtained with a silent
ackground (86.82%), the recognition rates obtained with

Table 3 – Recognition rates in free text mode detailed per
training type and sessions (noises)

Session Free text mode

Training: silence
(Free1) (%)

Training:
ventilation1
(Free2) (%)

Silence 87.53 86.43
Ventilation1 86.34 87.09
Other seven sessions 74.09 77.15
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 68–77 73

“Ventilation1” are not significantly inferior (84.4%, ˇ = −.213
for mic#1, ˇ = −.075 for mic#2), see Fig. 2. “Ventilation1” is
the constant background noise observed in the OR environ-
ment and is also the one used when training with background
noise (command2 and free2 modes). These results suggest
that recognition rates in ORs may be close to the ones cur-
rently obtained in noise-free environments, provided no other
type of noise intervenes. This is in agreement with another
study [4], which reports that ambient noise (hospital ward,
emergency room) had no effect on recognition accuracy.

The seven other types of background noises gave signifi-
cantly lower recognition rates than the session with a silent
background (ˇ ≤ −.475 down to −1.52 for mic#1, ˇ ≤ −.056
down to −.58 for mic#2, with mic#1 in silence as reference).
In Table 1, differences between most noises are significant
(p < .001), also when combined with the type of microphone.
The limited impact, for the best microphone, of people talking
in the background is encouraging.

While the deleterious effect of background noises is to a
large extent given by their loudness in dB(A), this can some-
times be misleading: “Metal” (slow measure 65–76 dB(A)) is
louder than “Alarms” (slow measure 59–63 dB(A)) and never-
theless, “Metal” gives slightly better recognition rates (+1.5
points using microphone 2).

3.3.1. Background noise without speech
The speech recognition system comes with a customisable
threshold intended to disable speech recognition when the
microphone is not used. When the background noise gets
louder, the threshold is eventually reached, enabling speech
recognition even in cases when nothing is being said. An addi-
tional experiment counting insertion errors has been made
to illustrate this issue: a user profile was randomly cho-
sen among the participants and each of the nine types of
background noises was produced for 1 min, with the same
experimental setup. Microphone 2 always performed better
than microphone 1. In command mode, the recognised com-
mands are, by nature, sentences allowed by the grammar,
but their confidence was always low (conf. ≤ .994) and often
very low, making most of them easy to discard. In free text
mode, recognised words never formed a complete intelligible
sentence.

During the experiment with participants, there were also
some insertions errors (at sentence level). In command mode,
the confidence score was never higher than .025 (N = 2) for
microphone 2 but reached .975 for microphone 1 (N = 5). In free
text mode, it is harder to tell due to alignment issues, but there
were at least ∼9 insertion errors for microphone 1 and ∼5 for
microphone 2. For a given background noise, it seems that
there are fewer insertion errors when something is actually
being said.

3.4. Participant differences

While women performed on average better than men (+3.5
points), the gender of the participants cannot be considered

due to the high inter-subject variability (p < .001, 18.1 points,
see Fig. 4). A previous study [13] reports inter-subject vari-
abilities as large as 40 points (55–95% word accuracy) for 39
endocrinology authors.
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3.5. Test material

The experiment has shown a very high inter-command vari-
ability of the recognition rate (p < .001 between many of them,
even when taking a reference close to the mean). The distribu-
tion of the recognition rate across the 108 different commands
is interesting: while the best recognised command reaches a
recognition rate of 97.7% (N = 218) (Danish word “tandskade”),
the 31st command is below 90%, the 71st < 80%, 89th < 70%,
92nd < 60%, 95th < 50%, 101st < 40% and the 108th and last
reaches a recognition rate of 13% (N = 198) (“lokal anæstetika”).
Only 18% of the commands have a recognition rate
below 70%.

This shows the importance of carefully designing gram-
mars, by choosing words that are easily recognisable for
the various users of the speech recognition engine and
sufficiently distant from each other phonetically to avoid
misrecognitions.

In the set of commands with the lowest recognition rates,
we find one of the most difficult words for the participants
to pronounce (“antitrendelenburg”) and possibly the most
difficult sentence to articulate (“svær intubation via larynx-
maske”), no doubt also related to participants not being
medically trained. More importantly, the set also includes all
the long commands that are only distinguished by a number
at their end (“journalen overført fra operationsstue {et, to, . . .,
otte}”, which translates to “record transferred from operat-
ing room {one, two, . . ., eight}”). Surprisingly, the names of
the medications are not in this set, possibly because they are
phonetically distinct.

3.6. Additional training

The experiment presented here has been done with minimal
training. Max Manus reports that it requires 10 h for the system
to be fully trained. The results therefore only reflect the per-
formance of the speech recognition engine “out of the box”.
There may be a potential performance improvement as the
system learns the general task context and adjusts each user’s
profile. One study [4] reports that “Accuracy improves with error
correction by at least 5 percent over two weeks”. Another more
detailed study [14] (using IBM Via-Voice Pro version 8 with
pathology vocabulary support) reports that “the lowest accuracy
achieved [. . .] was on the first day of the study (87.4% [word accu-

racy]), and the highest was on the [10th and] last day (96%)” with
a plateau “at approximately day 4–5 of the study (94–95%)”. (See
below the “Word accuracy” chapter to compare the recognition
rates.)

Table 4 – Recognition rates with cross-matching validations

Mic. 1 Mic. 2

Command mode 78.33% 84.96%
Free text mode 71.76% 82.41% 83.43%a

Best modea (potential) 96.30% (+11.34)
Best modea (effective) N/A

a Using free text mode trained with background noise.
b Using effective combination for command mode.
l i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 68–77

To illustrate this learning effect, one participant did an
additional training session (he read once more the 108 com-
mands, which were then corrected and submitted to the
system for adaptation). This participant was chosen randomly.
He was male and achieved the 6th best recognition rate of the
eight participants. His free speech recognition rate increased
with 2.5 points (to 80.3%) on the same corpus by doing an
additional ∼5 min of training.

3.7. Redundant cross-matching validation

Speech recognition in noisy environments is a long-standing
problem, and many solutions have been tried [15]. In this
paper, apart from the training with noise, no special improve-
ment strategy has been used so far.

When redundant sources of information are available, such
as through the two microphones in the present experiment,
a post-processing system can be set up with the goal of
obtaining better results than the best source alone. Such a con-
cept has been described in, for instance, the ROVER system
[16] that is using an alignment and voting module. Previ-
ous experiments [17] combining various speech recognition
systems demonstrated the usefulness of such an architec-
ture. The positive gain of a combined system over the best
system alone has been about 4 points out of a potential
gain of 7–12 points if the voting was perfect. Other experi-
ments have combined multiple microphones [18] to improve
the signal before sending it to a single speech recognition
system.

The originality of the present experiment is an architec-
ture made of multiple instances of speech recognition engines,
each of them using a different microphone, and the combina-
tion of command mode with free text mode.

Table 4 summarises the results. Horizontally it shows the
improvement that can be achieved when combining the recog-
nitions from the two microphones. Vertically it shows the
combination of command mode with free text mode. The
largest simple potential improvement is when combining
command mode and free text mode, but combining the results
from the two microphones is also beneficial. The combination
of the two previous combinations is potentially even higher,
reaching 96.67% of potential recognition rate if a perfect selec-
tion algorithm was used.

The “potential” improvement shows indeed an upper

bound, as it is the ideal case where the best result is always
selected, which is in practice not achievable. The “effective”
improvement is real, as it uses the highest confidence score to
select what is ultimately recognised, when two recognitions

Best mic. (potential) Best mic. (effective)

86.79% (+1.83) 86.41%b (+1.45)
84.88% (+2.47) N/A
96.67%b (+11.71)
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re not identical. The confidence score was only available for
ommand mode, so the selection problem is not addressed for
ases involving free text mode. The confidence score should
e accessible in free text mode as well, when building ad hoc
rograms instead of using the standard user interface.

.7.1. Discussion on cross-matching validation
arlier in the paper, it has been shown that microphone 2
headset) performed on average better than microphone 1
handheld) for all types of background noises, for both com-

and and free text mode, and for all participants. In the case
f a system with multiple microphones, it would appear nat-
ral to use only headset microphones, or more generally, only
he type that performs best. However, the best outcome from

multi-microphone system is likely achieved when micro-
hones of different types are combined. Similarly, because
he free text and command modes make different recognition
rrors there appears to be considerable potential in combining
hese two types of recognition.

.8. Word accuracy

n this study, recognition rates are reported at command level
i.e., per short sentence). To facilitate comparisons the stan-
ard word recognition rate (WRR) was calculated for the silent
ession using free text mode trained in silence and taking into
ccount the keyword for “full stop”, which is the most typical
cenario reported in the literature:

Microphone 1 (86.78% accuracy on 401 sentences): 1158 of
1272 words recognised (91.04%), Levenshtein word distance
of 155, WRR = 87.41%.
Microphone 2 (88.30% accuracy on 401 sentences):
WRR = 88.60%.

Keeping in mind that the experiment was made in Danish
nd that enrolments were very short (about 15 min), it is pos-
ible to compare the above reported recognition rate obtained
ith free text mode with a previous study [19] evaluating con-
inuous speech recognition in the medical domain (in English,
nrolment in less than 60 min). In this study IBM ViaVoice 98
ith General Medicine Vocabulary performed best (90.9–93%
ord accuracy) followed by the L&H Voice Xpress for Medicine,

Table 5 – Observed impact of studied parameters on recognition

Parameter Average recognition

Microphone type 73.9/83.2% Mic#1/Mic#2
Recognition mode 77.1/81.6% free text/command
Training type (free text mode) 75.58–78.19% without/with nois
Background noises 66.42–86.82% “scratch”/“silence
Participants 68.39/86.48% Man#3/Woman#2

Gender of the participants 76.81/80.32% male/female
Commands 97.71/13.13% “tandskade”/“loca
Time effect (learning/fatigue) 76.85/80.41% session 2/session
Training duration 77.5/80.3% with +5 mn training
Cross-matching validation 84.96/86.41% command mode
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 68–77 75

General Medicine Edition, version 1.2 (84.9–86.6%) and then
Dragon Systems NaturallySpeaking Medical Suite, version 3.0
(84.8% to 14.1% to 85.9%). Another study [13] obtained an aver-
age of 84.5% word accuracy and another one [20] even reached
98% with one highly trained speaker in French and in a narrow
medical field.

4. Descriptive statistics summary

To provide an overview, Table 5 summarises the relative
impact of 10 studied factors, giving recognition rates at com-
mand level. The “average recognition rates” are the overall
average recognition rates of the two most extreme values of
the studied parameter. The “largest observed impact” is the
largest observed difference in recognition rates between two
values of the studied parameter when combined with at most
one other parameter. While Table 1 provides the statistical
analysis results, Table 5 gives a less precise but perhaps more
illustrative overview.

5. Discussion

5.1. Participants

The experiment would have been more realistic if participants
had been medical staff. Undeniably, there were some medi-
cal words that were not perfectly pronounced. Furthermore,
errors that are due to mispronunciation and more generally
any type of wrong dictation have not been removed from
the statistics. However, the effect of those limitations is to
decrease the recognition rate in a uniform way. Therefore, the
main point of the experiment – to study the relative impact of
various parameters – should not be affected.

5.2. Type of training

For the free text mode, the experiment shows an advantage
of profiles trained with background noise, in agreement with

the literature. However, there is a possible difference between
constant and variable background noises. In the reported
experiment, the background noise used for the enrolment was
mainly constant (ventilation) but with an additional variable

rates

rates Largest observed impact

19.3 points for “Ventilation3” noise
30.19 points for “Scratch” noise

e 6.75 points for “Ventilation3” noise
” 25.72 points with Mic#1

21.29/38.81 points in command mode/for
“Ventilation3” noise
12.11 points for “Ventilation3” noise

l anæstetika” 84.58 points
7 3.56 points

2.5 points (potentially more)
1.45 points effective/11.3 points potential
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Summary points

What was known before the study:

• Speech recognition is increasingly used for anaesthe-
sia related applications (pre- and post-anaesthesia)
and is now envisaged for real time use during oper-
ations.

• Background noise reduces speech recognition accu-
racy and there are various types of loud noises in an
operating room.

• Several other factors have an influence on speech
recognition rates, such as the type of microphone, par-
ticipants, the type of training and recognition, etc.

• There are various known possible strategies to improve
speech recognition rates.

What the study has added to the body of knowledge:

• The impact on speech recognition of various types of
noises collected in an operating room has been mea-
sured.

• The relative effect of factors influencing speech recog-
nition rates has been evaluated.

• A simple but original architecture has been tested in
which two recognition engines and two microphones
are used at the same time. This approach is especially
interesting for safety critical applications such as real
time medical applications.

• The author believes this is the first paper to be pub-
lished about an experiment using a commercial speech
recognition system in Danish.

cial thanks to Viggo Stryger and Køge Hospital, Herlev
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noise (a pulse beep). The author believes that constant back-
ground noise during enrolment will help when the system
is afterwards used in a similar environment, while variable
noises would only disturb the process. Additional experiments
are needed to clarify this. Finally, a system such as Philips
SpeechMagic, which learns every time it is used, should be
evaluated for a longer period, and not only during the first
session, to tell which type of training is ultimately the best for
a given environment.

5.3. Laboratory

The reverberation observed in the small room where the
experiment was conducted is known to affect speech intel-
ligibility [21] but that again should have only negligible effects
on the relative impact of the studied parameters. While ORs
are typically larger and therefore should suffer less from small
room reverberation effects, some of them may have some even
worse acoustics due to other factors.

5.4. Performance metric

Some differences have been shown between recognition rates
at word level compared to rates at sentence level, keeping
in mind that the sentences used in this experiment were
short commands (two to seven words, mean 3.2). While the
traditional word recognition rate (WRR) is a good measure
of the raw performance of speech recognition engines, the
author does not consider it relevant to measurements of the
quality of speech recognition systems where the goal is a
good semantic accuracy of short commands, avoiding “crit-
ical errors” [2]. For the latter, the command recognition rate
(CRR) should be favoured, possibly with a semantic layer that
tolerates minor variations that do not alter the meaning. How-
ever, this CRR may not be suited for applications using long
sentences.

6. Conclusion

The above experiment has removed some uncertainties
regarding the development of a voice-input interface for sup-
plementing existing electronic anaesthesia record systems.
Background noises have a strong impact on recognition rates,
but common noises have been shown to cause only a slight
degradation of performances, especially when combined with
a suitable microphone, staying close to the performances that
can be achieved in office environments.

When measuring the performances of a speech recognition
system or comparing microphones in a noisy environment,
a general advice would be to use various loudness levels.
To get more precise results, several types of background
noises should be tested and, in particular, not only “white
noise”.

When the loudness of background noises is above the
threshold for automatic cut-off, for a given long timeframe

(1 min), there are more insertion errors when nothing is said
than when something is actually said. It is therefore espe-
cially important to have a way to pause speech recognition
and an appropriately tuned filter for low confidence recogni-
tions. Apart from training, the major factor appears to be the
words used in the commands. Therefore, the grammar for the
command mode should be designed with care, avoiding words
or commands that are hard to recognise or to distinguish
from each other. Finally, it has been shown that a redun-
dant architecture promises some interesting gains. There is
indeed still a need for improvement before such speech recog-
nition systems can be reliably deployed with only modest user
effort.
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[5] E. Lombard, Le signe de l’élévation de la voix, Ann. Maladies
Oreille, Larynx, Nez, Pharynx 31 (1911) 101–119.

[6] John H.L. Hansen, Analysis and compensation of speech
under stress and noise for environmental robustness in
speech recognition, Speech Commun. 20 (1996) 151–173,
doi:10.1016/S0167-6393(96)00050-7.

[7] W.M. Detmer, S. Shiffman, J.C. Wyatt, C.P. Friedman, C.D.
Lane, L.M. Fagan, A continuous-speech interface to a
decision support system. II. An evaluation using a
wizard-of-oz experimental paradigm, J. Am. Med. Informat.
Assoc. 2 (1) (Jan–Feb 1995) 46–57.

[8] A. Sears, J. Feng, K. Oseitutu, C.-M. Karat, Hands-free,
speech-based navigation during dictation: difficulties,
consequences, and solutions, Hum.-Comput. Interact. 18
(2003) 229–257, doi:10.1207/S15327051HCI1803 2.

[9] K.S. Anja, O.-S. Bohn, Acoustic studies comparing Danish
vowels, British English vowels and Danish-accented British
English vowels, Collected Papers (CD-ROM) of the 137th
Meeting of the Acoustical Society of America and the 2nd
Convention of the European Acoustics Association, Forum

Acousticum, Paper 2pSCb21, Technical University of Berlin,
Germany (1999). Abstract in the J. Acoust. Soc. Am. (1999)
105 (2) 1097. doi:10.1121/1.425143.

[10] C.P. Sobel, A generative phonology of Danish, Ph.D. Thesis,
City University of New York, 1981.
i n f o r m a t i c s 7 7 ( 2 0 0 8 ) 68–77 77

[11] Juhani Saastamoinen, Zdenek Fiedler, Tomi Kinnunen, Pasi
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